Руководства, Инструкции, Бланки

схема полей зрения бланк img-1

схема полей зрения бланк

Рейтинг: 4.8/5.0 (1834 проголосовавших)

Категория: Бланки/Образцы

Описание

Регистрация результатов исследования

Регистрация результатов исследования

При этом встречаются те же трудности, которые стоят перед географами, когда им нужно изобразить на карте Землю, имеющую форму шара.

При нанесении данных, получаемых при периметрии, на схемы полей зрения чаще применяют так называемую полярную эквидистантную проекцию. Точка фиксации при этом располагается в центре схемы.

Параллели и основные меридианы располагаются на одинаковом расстоянии друг от друга; параллели — обычно через 10 градусов, до 90° от центра, а основные меридианы — через 15-30°.

Если принять, что поле зрения в соответствии со строением глаза и сетчатки является сферическим, то можно его изобразить в виде окружности (рис. 91).

Рис. 91. Проекция с дуги периметра на плоскую поверхность схемы поля зрения.

Тогда точка фиксации на схеме явится центром, от которого расходятся меридианы, которые представляют меридианы шара, а концентрически расположенные круги — параллели.

По рекомендации XIII Международного конгресса офтальмологов (Амстердам, 1929), результаты исследования поля зрения должны наноситься на схему так, как его видит исследуемый, т. е. поле зрения правого глаза на схеме должно быть расположено справа, а левого — слева от читающего. При этом, рассматривая схему, врач должен представить себя на месте больного. На схемах поля зрения 0° должен находиться с левой стороны, 90° — сверху, 180° — справа, а 270° — снизу.

Однако XIV Международный конгресс офтальмологов (Мадрид, 1933) рекомендовал другую схему обозначений. Поле зрения на схемах должно наноситься так, как его видит исследующий, т. е. поле зрения для правого глаза — слева, а поле зрения левого глаза — справа. Нулевой меридиан (0°) на схемах должен находиться справа, 90° — сверху, 180° — слева, 270°—снизу (рис. 92).

Рис. 92. Схемы полей зрения, ориентированных в соответствии с решениями Мадридского международного конгресса офтальмологов 1933 г.

В СССР применялись оба вида обозначения полей зрения, так как каждый из них имеет свои преимущества и неудобства.

Важно помнить, что оптическая система глаза продуцирует на сетчатке инвертированные (перевернутые) образы. Поэтому дефекты в поле зрения проецируются в поле зрения таким же образом, т. е. если повреждение на сетчатке находится выше центральной ямки и к носу от нее, то в поле зрения оно будет ниже и к виску от нее. Так же оно должно быть отражено и в схеме полей зрения (рис. 93).

Рис. 93. Соотношение между скотомами в поле зрения (физиологическими и патологическими) и соответствующими образованиями на сетчатке.

Для обозначения результатов кампиметрического исследования чаще употребляют схему, на которой можно отмечать изменения только в центральных и средних областях поля зрения в пределах 30° (рис. 94).

Рис. 94. Схема для изображения реультатов кампиметрических исследований поля зрения.

Проекция при этом избирается обычно эквидистантная.

А. И. БОГОСЛОВСКИЙ и А. В. РОСЛАВЦЕВ

Другие статьи

Интернет новости: Новости

serial kumush.mp3 2010

warzone tower defence

Периметрия – один из наиболее простых методов исследования, который применяют для диагностики Результаты отображают на специальном бланке. Бланк схем полей зрения (250 шт.) Периметрия. Результаты исследования переносят на специальную схему полей зрения. ручка-указка с цветными тест-объектами. Поле зрения – пространство, «видимое» глазом при фиксированном взоре. P = (a + b) • 2, где a - длина прямоугольника, b - ширина прямоугольника.периметр. Как правило мы не задумываемся о форме периметра устанавливаеы. Периметрия — определение границ поля зрения при проекции их на сферическую поверхность. бланк схем полей зрения Технические схемы и документация на QRZ.RU. блок питания. и дефектов внутри него, используя методы кинетической, статической и цветовой периметрии. Результаты периметрии представляют в виде 2-мерных (плоскостных) карт ( схем) когда проведение компьютерной статической заявление о постановке на енвд в 2013 году бланк. Подробная информация о ресурсе. всю линию границы поля зрения — но наносит ее фактически на задней поверхности бланка (схема IV). Результаты измерения заносят на периметрический бланк, на котором указаны границы «автоматического» переноса результатов периметрии на специальные бланки. Периметр прямоугольника - это сумма длины и ширины, умноженная на 2. Теги: периметр проект, Система гарантированного ответного ядерного удара Периметр, темы родительских собраний в 4 классе, проекты реконструкция здания, бесплатные схемы картин Результаты периметрии регистрируются на специальном бланке, который входит в комплект поставки.
серт телесериал музыка, образец таблицы сметы, все о порно в чулочках y

Qikiterast. 06.03.2016 в 16:35
Все для смартфонов http://www.smart-classic.ru/ скачать игры на ios

Медицинский сайт студентам врачам пациентам книги ВУЗы

Периферическое зрение осуществляется преимущественно палочковым аппаратом. Оно позволяет человеку хорошо ориентироваться в пространстве, воспринимать всякого рода движения. Периферическое зрение это еще и сумеречное зрение, т.к. палочки высоко чувствительны к пониженному освещению.

Периферическое зрение определяется полем зрения. Поле зрения - это пространство, которое видит глаз при фиксированном его состоянии. При исследовании поля зрения определяют периферические границы и наличие дефектов в поле зрения. Существует несколько способов определения.

Контрольный способ Дондерса: больной и врач усаживаются друг напротив друга на расстоянии 1 м и закрывают по одному разноименному глазу, а открытые глаза служат неподвижной точкой фиксации. Врач начинает медленно двигать с периферии поля зрения кисть своей руки или другой объект, перемещая его постепенно к центру поля зрения. Исследуемый должен указать момент, когда он заметит в своем поле зрения движущийся объект. Исследование повторяют со всех сторон. Если появление руки исследуемый видит когда и врач, то можно сказать, что границы поля зрения у больного нормальны. Необходимым условием является нормальное поле зрения у врача. Этот метод ориентировочный и позволяет обнаружить только грубые изменения в поле зрения. Он пригоден для исследования тяжелобольных, особенно лежачих.

Определить границы поля зрения можно с помощью компьютерной периметрии, а наиболее точно - при проекции их на сферическую поверхность. Исследование этим способом носит название периметрии и производится с помощью приборов, которые называются периметрами. Наиболее широкое распространение получил электрический проекционно-регистрационный периметр (ПРП). Во многих случаях по точности ему не уступает периметр Ферстера, который наиболее прост в обращении. На ПРП исследование проводится всегда в одних и тех же условиях, в зависимости от остроты зрения и других причин изменяются величина, цвет и светлота объектов.

Полученные данные наносятся на схему. Во всех случаях необходимо исследовать поле зрения не менее чем в 8 меридианах. В среднем, нормальные периферические границы поля зрения на белый цвет равны: кнаружи 90°, кверху 50-55°, кверху кнаружи 70°, кверху кнутри 60°, книзу 65-70°, книзу кнаружи 90°, книзу кнутри 50°, кнутри 50°. Это границы монокулярного поля зрения, индивидуальные колебания которого не превышают 5-10°. Большое значение имеет также определение границ бинокулярного поля зрения.

Для диагностики и суждения о ходе многих заболеваний зрительных нервов и сетчатки необходимо определить границы поля зрения на цвета. При этом исследовании пользуются объектом величиной в 5 мм. Границы поля зрения на цвета уже, чем на белый цвет и в среднем следующие: на синий цвет кнаружи 70°, кнутри, кверху и книзу - 50°; на красный цвет кнаружи 50°, кнутри, кверху и книзу - 40°; на зеленый - по всем четырем меридианам 30°.

На границы поля зрения в норме оказывают влияние многочисленные факторы, такие как глубина передней камеры и ширина зрачка, степень внимания исследуемого, его утомленность, состояние адаптации, величина и яркость показываемого объекта, характер освещения фона, скорость движения объекта и т.д.

Изменения поля зрения могут проявляться или в виде сужения его границ, или в виде выпадения в нем отдельных участков. Сужение границ поля зрения может быть концентрическим и может достигнуть таких степеней, что от всего поля зрения останется только небольшой центральный участок (трубчатое поле зрения).

Сужение поля зрения бывает при заболеваниях зрительного нерва, при пигментной абиотрофии, при сидерозе сетчатки, при отравлении хинином и т.д. Функциональными причинами может быть истерия, неврастения, травматический невроз.

Может быть секторообразное выпадение поля зрения при таких заболеваниях как глаукома, при частичных атрофиях зрительного нерва, при закупорке одной из ветвей центральной артерии сетчатки.

Сужение поля зрения неправильной формы отмечается при отслойке сетчатой оболочки. Половинное или квадрантное выпадение полей зрения наблюдается при поражении зрительных трактов, хиазмы, субкортикальных ганглиев и участков коры затылочной доли мозга.

Гомонимная одноименная гемианопсия может быть право- и левосторонней. Причинами гомонимной гемианопсии являются опухоли, кровоизлияния, воспалительные заболевания головного мозга различной этиологии. Если поражение захватывает не весь зрительный тракт, а его часть, то выпадает четверть поля зрения на каждом глазу. Это квадрантная гемианопсия. Если поражение располагается в лучистости Грациоле или корковых отделах зрительных путей, то возникает гомонимная гемианопсия с сохранением области желтого пятна, т.к. волокна макулярной области каждого глаза, идущие к обоим полушариям мозга, остаются не поврежденными при расположении очага выше внутренней капсулы.

Гетеронимная разноименная гемианопсия может быть битемпоральной и биназальной. Битемпоральная гетеронимная гемианопсия, при которой выпадают височные половины полей зрения на обоих глазах, чаще бывают при опухолях гипофиза, при воспалительных процессах основания мозга. Биназальная гемианопсия возможна при двусторонних аневризмах или склеротических изменениях внутренней сонной артерии, при внутренней гидроцефалии. При внутримозговых кровоизлияниях бывают двойные гемианопсии и тогда сохраняется лишь центральный участок, наподобие трубчатого поля зрения.

Изменение поля зрения может быть в виде скотом. Скотома - это ограниченный дефект в поле зрения. В нормальном поле зрения всегда существует физиологическая скотома или слепое пятно, которое располагается с темпоральной стороны по горизонтальному меридиану между 10 и 20° от точки фиксации. Это проекция диска зрительного нерва. Скотома здесь объясняется отсутствием световоспринимающего слоя сетчатки. Размеры его по вертикали 8-9 дуговых градусов, по горизонтали - 5-6°. Увеличение слепого пятна может обуславливаться заболеваниями зрительного нерва, сетчатой и сосудистой оболочек, глаукомой, миопией. Расширению слепого пятна придают большое значение в дифференциальной диагностике истинного застойного диска от псевдозастоя и псевдоневрита. Патологические ограниченные дефекты поля зрения могут быть при очаговых поражениях сетчатой оболочки, сосудистой, зрительных путей.

Различают положительную и отрицательную скотому. Положительная скотома - это скотома, которую ощущает перед глазом сам больной в виде темного, иногда окрашенного пятна. Отрицательная скотома больным не ощущается, а обнаруживается при исследовании. При остром развитии процесса в периферическом нейроне зрительно-нервного пути (сетчатка, зрительный нерв, хиазма, зрительный тракт) появляются положительные скотомы, при медленном - отрицательные скотомы (глаукома, пигментный ретинит). При хроническом течении процесса в центральном нейроне (выше наружного коленчатого тела) наблюдаются отрицательные скотомы.

Скотомы могут быть абсолютными и относительными. Абсолютная, если на этом участке белые и цветные объекты совсем не воспринимаются. Относительная - когда белый цвет кажется неясным, туманным. При относительной скотоме на цвета - цвета кажутся менее насыщенными, чем на нормальных участках поля зрения.

По расположению различают скотомы центральные и периферические.

Центральные скотомы выявляются при поражении в фовеолярной зоне сетчатки (туберкулез, центральный разрыв сетчатки, старческая дегенерация и т.д.), папилломакулярного пучка - при заболевании зрительного нерва (воспалительный процесс, при отравлении метиловым алкоголем, свинцом, рассеянном склерозе) или сдавлении зрительного нерва внутри орбиты, в зрительном канале, внутри черепа и при поражении хиазмы.

Периферические скотомы, иногда многочисленные дефекты, располагающиеся в различных участках поля зрения, наблюдаются при поражениях сетчатой и сосудистой оболочек (диссеминированный хориоидит, кровоизлияния в сетчатку и др.).

Исследуются скотомы методом кампиметрии. Кампиметром может служить обычная черная доска размером 2 х 2 м, с освещенностью не менее 75 люкс. Больного помещают перед доской на расстоянии 1 м и предлагают фиксировать белую точку, находящуюся в центре доски. С периферии доски или от центра к периферии ведут белый объект величиной 1-3 или 5 мм2 до его исчезновения. На доске мелком или вкалыванием булавки обозначают момент исчезновения объекта. Исследуют границы скотом минимум в 8 направлениях. Так же, как при исследовании поля зрения каждый глаз проверяют отдельно. С помощью кампиметра можно также определить границы поля зрения, но только в пределах 40° от центра. Определить границы поля зрения у детей дошкольного возраста указанным методом невозможно.

О поле зрения у детей до 3 лет можно судить по их ориентировке в окружающей обстановке. Объективное определение поля зрения в основном производится методом пупилломоторных реакций и оптокинетического нистагма. Иногда у детей младшего возраста определить поле зрения удается контрольным способом. К этому способу приходится прибегать, даже обследуя детей более старшего возраста. У детей дошкольного возраста границы поля зрения примерно на 10% уже, чем у взрослых, расширяясь до нормы к школьному возрасту. Размер слепого пятна у детей старших возрастных групп составляет 12 Х 14 см (Е.И. Ковалевский).

В настоящее время имеется ряд других приборов для исследования поля зрения и скотом.

иллюзии, вызванной периферическим зрением.

Учебник Нестерова

/ Учебник Нестерова

В основе действия аномалоскопов лежит сравнение двухцветных полей, из которых одно постоянно освещает­ся монохроматическими желтыми лучами с изменяемой яркостью, а другое поле, освещаемое красными и зелеными лучами, может менять тон от чисто красного до чисто зеленого. Смешивая красный и зеленый цвета, обследуемый должен получить желтый цвет, по тону и яркости соответствующий контрольному. Трихроматы легко решают эту задачу, а цветоаномалы – нет.

Поле зрения и методы его исследования

Полем зрения называется пространство, которое одновременно воспринимается не­подвижным глазом. Состояние поля зрения обеспечивает ориентацию в простран­стве и позволяет дать функциональную характеристику зрительного анализатора при профессиональном отборе, освидетельствовании военнообязанных, экспертизе трудоспособности, в научных исследованиях. Изменение поля зрения является ран­ним и нередко единственным признаком многих глазных болезней. Динамика поля зрения часто служит критерием для оценки течения заболевания и эффективности проводимого лечения, а также имеет прогностическое значение. Выявление нару­шений поля зрения оказывает существенную помощь в топической диагностике поражения головного мозга в связи с характерными дефектами поля зрения при по­вреждении различных участков зрительного пути. Изменения поля зрения при по­ражении головного мозга нередко являются единственным симптомом, на котором базируется топическая диагностика. Все это объясняет практическую значимость изучения поля зрения и вместе с тем требует единообразия методик для получения сопоставляемых результатов.

Размеры поля зрения нормального глаза определяются как границей оптиче­ски деятельной части сетчатки, расположенной по зубчатой линии, так и конфи­гурацией соседних с глазом частей лица (спинка носа, верхний край глазницы). Основными ориентирами поля зрения являются точка фиксации и слепое пятно. Первая связана с областью центральной ямки желтого пятна, а второе – с диском зрительного нерва, поверхность которого лишена светорецепторов.

Исследование поля зрения заключается в определении его границ и выявлении дефектов зрительной функции внутри них. Для этой цели применяют контроль­ные и инструментальные методы.

Обычно поле зрения каждого глаза исследуют отдельно (монокулярное поле зрения) и в редких случаях одновременно обоих глаз (бинокулярное поле зрения).

Контрольный метод исследования поля зрения прост, не требует применения приборов. Он широко используется в амбулаторной практике и у тяжелобольных для ориентировочной оценки.

Сущность контрольного метода исследования заключается в сравнении поля зрения обследуемого с полем зрения врача, которое должно быть нормальным. По­местив больного спиной к свету, врач садится против него на расстоянии 1 м. За­крыв один глаз обследуемого, врач закрывает свой глаз, противоположный закры­тому у больного.

Контрольный метод исследования поля зрения

Обследуемый фиксирует взглядом глаз врача и отмечает момент появления пальца или другого объекта, который врач плавно передвигает с разных сторон от периферии к центру на одинаковом расстоянии между собой и больным. Сравнивая показания обследуемого со своими, врач может установить изменения границ поля зрения и наличие в нем дефектов.

К инструментальным методам исследования поля зрения относятся кампиметрия и периметрия.

Кампиметрия( от лат.:campus – пoлe, плоскость и греч.:metreo – измерять) способ измерения на плоской поверхности центральных отделов поля зрения и определения в нем дефектов зрительной функции.

Метод позволяет наиболее точно определить форму и размеры слепого пятна, центральные и парацентральные дефекты поля зрения – скотомы (от греч. skotos – темнота).

Исследование проводят с помощью кампиметра – матового экрана черного цвета с белой фиксационной точкой в центре. Больной садится спиной к свету на расстоянии 1 м от экрана, опираясь подбородком на подставку, установленную против точки фиксации.

Белые объекты диаметром от 1-5 до 10 мм, укрепленные на длинных стержнях черного цвета, медленно передвигают от центра к периферии в горизонтальном, вертикальном и косых меридианах. При этом булавками или мелом отмечают точ­ки, где исчезает объект. Таким образом отыскивают участки выпадения – ското­мы и, продолжая исследование, определяют их форму и величину.

Слепое пятно – проекция в пространстве диска зрительного нерва, отно­сится к физиологическим скотомам. Оно расположено в височной половине поля зрения на 12-18° от точки фиксации. Его размеры по вертикали составляют 8-9°, а по горизонтали – 5-8°.

Изображение физиологических скотом на скотометрических схемах при исследовании поля зрения правого глаза (крестиком обозначена точка фиксации): 1 – слепое пятно; 2 – ангиоскотомы.

К физиологическим скотомам относятся и лентовидные пробелы в поле зре­ния, обусловленные сосудами сетчатки, расположенными впереди ее фоторецеп­торов, – ангиоскотомы. Они начинаются от слепого пятна и прослеживаются на кампиметре в пределах 30-40° поля зрения.

Периметрия – наиболее распространенный простой и достаточно совершенный метод исследования периферического зрения. Основным достоинством периме­трии является проекция поля зрения не на плоскость, а на вогнутую сферическую поверхность, концентричную сетчатке. Благодаря этому исключается искажение границ поля зрения, неизбежное при исследовании на плоскости. Перемещение объекта на определенное число градусов по дуге даст равные отрезки, а на плоскости их величина неравномерно увеличивается от центра к периферии.

Основной деталью наиболее распространенного настольного периметра является дуга шириной 50 мм и с радиусом кривизны 333 мм. В середине этой дуги расположен белый неподвижный объект, служащий для обследуемого точкой фик­сации. Центр дуги соединен с подставкой осью, вокруг которой дуга свободно вра­щается, что позволяет придавать ей любой наклон для исследования поля зрения в разных меридианах. Меридиан исследования определяют по диску, разделенному на градусы и расположенному позади дуги. Внутренняя поверхность дуги покрыта черной матовой краской, а на наружной с интервалами 5° нанесены деления от 0 до 90°. В центре кривизны дуги расположена подставка для головы, где по обе стороны от центрального стержня имеются упоры для подбородка, позволяющие установить исследуемый глаз в центр дуги. Для исследования используют белые или цветные объекты, укрепленные на длинных стержнях черного цвета, хорошо сливающихся с фоном дуги периметра.

Достоинствами настольного периметра являются простота в обращении и де­шевизна, а недостатком – непостоянное освещение дуги и объектов, неточный контроль за фиксацией глаза. С его помощью трудно обнаружить небольшие де­фекты поля зрения (скотомы).

Значительно больший объем информации о периферическом зрении получа­ют при исследовании с помощью проекционных периметров, действие которых основано на принципе проекции светового объекта на дугу или на внутреннюю поверхность полусферы (сферопериметр, рисунок 3.12).

Рис. 3.12 – Измерение поля зрения на сферопериметре

Набор диафрагм и свето­фильтров, вмонтированных на пути светового потока, позволяет быстро и главное дозированно изменять величину, яркость и цветность объектов. В сферопериметре, кроме того, можно дозированно менять яркость освещения фона и исследо­вать дневное (фотопическое), сумеречное (мезопическое) и ночное (скотопическое) поля зрения. Устройство для последовательной регистрации результатов позволяет сократить время, необходимое для проведения исследования. У лежачих больных поле зрения исследуют с помощью портативного складного периметра.

Методика периметрии. Поле зрения исследуют поочередно для каждого глаза. Второй глаз выключают с помощью легкой повязки так, чтобы она не ограничивала поле зрения исследуемого глаза.

Больного в удобной позе усаживают у периметра спиной к свету. Исследова­ние на проекционных периметрах проводят в затемненной комнате. Регулируя высоту подголовника, устанавливают исследуемый глаз в центре кривизны дуги периметра против фиксационной точки.

Для определения границ поля зрения на белый цвет используют объекты диаметром 3 мм, а для из­мерения дефектов внутри поля зре­ния – 1 мм. При плохом зрении можно увеличить размеры и яркость объектов. Периметрию на цвета проводят с помощью объектов диаметром 5 мм. Перемещая объект по дуге периметра от периферии к центру, отмечают по градусной шкале дуги момент, когда обследуемый констатирует появление объекта. При этом необходимо сле­дить за тем, чтобы обследуемый не двигал глазом и постоянно фиксировал непод­вижную точку в центре дуги периметра. Движение объекта следует проводить с постоянной скоростью 2-3 см/с.

Поворачивая дугу периметра вокруг оси, последовательно измеряют поле зре­ния в 8-12 меридианах с интервалами 30 или 45°. Увеличение числа меридианов исследования повышает точность периметрии, но вместе с тем прогрессивно воз­растает время, затрачиваемое на исследование.

Периметрия с помощью одного объекта позволяет дать только качественную оценку периферического зрения, довольно грубо отделяя видимые участки от невидимых. Более точную характеристику поля зрения можно получить с помо­щью компьютерной статической периметрии.

Исследование проводят на сферопериметре двумя объектами разной величи­ны, которые с помощью светофильтров подравнивают так, чтобы количество от­раженного ими света было одинаковым. В норме границы поля зрения (изоптеры), полученные с помощью двух объектов, совпадают. Разница изоптер более чем на 5° указывает на нарушение пространственной суммации в поле зрения. Метод по­зволяет улавливать патологические изменения поля зрения на ранних стадиях за­болевания, когда обычная периметрия не выявляет отклонений от нормы.

При исследовании поля зрения на цвета следует учитывать, что при движении от периферии к центру цветной объект воспринимается различно. На крайней периферии в ахроматической зоне все цветные объекты видны примерно на оди­наковом расстоянии от центра поля зрения и кажутся серыми. При движении к центру они становятся хроматичными, но сначала их цвет воспринимается непра­вильно. Так, красный из серого переходит в желтый, затем в оранжевый и, наконец, в красный, а синий – от серого через голубой к синему. Границами поля зрения на цвета считаются участки, где наступает правильное распознавание цвета. Раньше всего узнаются синие и желтые объекты, затем красные и зеленые. Границы нор­мального поля зрения на цвета подвержены выраженным индивидуальным коле­баниям (табл. 3.1).

Средние границы поля зрения на цвета (в градусах)

В последнее время область применения периметрии на цвета все больше сужа­ется, ее вытесняет квантитативная периметрия.

Наряду с описанными методиками периметрии все шире внедряется стати­ческая периметрия, при которой в заранее обусловленных точках поля зрения (50-100 и более) предъявляют неподвижные объекты переменной величи­ны и яркости. Это не только повышает вероятность обнаружения дефектов поля зрения, но и позволяет судить об абсолютной и различительной световой чувстви­тельности в различных участках сетчатки.

Автоматическая периметрия. В последнее время созданы автоматические периметры, освобождающие офтальмолога от кропотливой работы и по­зволяющие избежать случайных результатов. Полусферический периметр управ­ляется портативным компьютером, в который заложено несколько программ исследования. Специальные устройства в соответствии с заданной программой проецируют тестобъект в любую точку полусферы, автоматически меняя его яр­кость в заданных пределах. Специальное приспособление регистрирует только результаты, полученные при правильном положении неподвижного глаза.

Регистрация результатов периметрии должна быть однотипной и удобной для их сравнения. Результаты измерений заносят на специальные стандартные бланки отдельно для каждого глаза. Бланк состоит из серии кругов с интервалом между ними 10°, которые через центр поля зрения пересекает координатная сетка, обо­значающая меридианы исследования. Последние наносят через 10 или 15°.

Схемы полей зрения принято располагать для правого глаза справа, для лево­го – слева; при этом височные половины поля зрения обращены кнаружи, а но­совые – кнутри.

На каждой схеме принято обозначать нормальные границы поля зрения на бе­лый и хроматические цвета (рисунок 3.13).

Рис. 3.13 – Нормальные границы полей зрения на белый и хроматические цвета

Для наглядности разни­цу между границами поля зрения обследуемого и нормой густо заштриховывают. Кроме того, записывают фамилию обследуемого, дату, остроту зрения данного глаза, освещение, размер объекта и тип периметра.

Границы нормального поля зрения в определенной степени зависят от методи­ки исследования. На них оказывают влияние величина, яркость и удаленность объ­екта от глаза, яркость фона, а также контраст между объектом и фоном, скорость перемещения объекта и его цвет.

Границы поля зрения подвержены колебаниям в зависимости от интеллекта об­следуемого и индивидуальных особенностей строения его лица. Например, круп­ный нос, сильно выступающие надбровные дуги, глубоко посаженные глаза, при­спущенные верхние веки могут обусловить сужение границ поля зрения. В норме средние границы для белой метки размером 5 мм 2 и периметра с радиусом дуги 33 см (333 мм) следующие: кнаружи – 90°, книзу кнаружи – 90°, книзу 60°, книзу кнутри – 50°, кнутри – 60°, кверху кнутри – 55°, кверху – 55° и кверху кнару­жи – 70°.

Для характеристики изменений поля зрения в динамике заболевания и стати­стического анализа используют суммарное обозначение размеров поля зрения, которое образуется из суммы видимых участков поля зрения, исследованного в восьми меридианах: 90 + 90 + 60 + 50 + 60 + 55 + 55 + 70 = 530°. Это значение принимают за норму. При оценке данных периметрии, особенно если отклонение от нормы невелико, следует соблюдать осторожность, а в сомнительных случаях проводить повторные исследования.

Патологические изменения поля зрения

Все многообразие патологических изменений (дефектов) поля зрения можно свести к двум основным видам:

1) сужение границ поля зрения (концентрическое или локальное);

2) очаговые выпадения зрительной функции – скотомы.

Концентрическое сужение поля зрения может быть сравнительно небольшим или простираться почти до точки фиксации – трубочное поле зрения (рисунок 3. 14).

Рис. 3.14 – Варианты концентрического сужения поля зрения

Концентрическое сужение развивается в связи с различными органическими заболеваниями глаза (пигментное перерождение сетчатки, невриты и атрофии зрительного нерва, периферические хориоретиниты, поздние стадии глаукомы), однако оно может быть и функциональным – при неврозах, неврасте­нии, истерии.

Дифференциальный диагноз функционального и органического сужений поля зрения основывается на результатах исследования его границ с помощью объектов различной величины и с разных расстояний. При функциональных нарушениях, в отличие от органических, исследование с помощью объектов различной величины заметно не влияет на величину поля зрения.

Определенную помощь оказывает наблюдение за ориентацией больного в окружающей обстановке: при концентрическом сужении органического характе­ра ориентация весьма затруднительна.

Локальные сужения границ поля зрения характеризуются сужением его в каком-либо участке при нормальных размерах на остальном протяжении. Та­кие дефекты могут быть одно- и двусторонними.

Локальное сужение поля зрения

Большое диагностическое значение имеет двустороннее выпадение половины поля зрения – гемианопсия. Гемианопсии делят на гомонимные (одноименные) и гетеронимные (разноименные). Они возникают при поражении зрительного пути в области зрительного перекреста или позади него в связи с неполным пере­крестом нервных волокон. Иногда гемианопсии обнаруживает сам больной, но чаще их выявляют при исследовании поля зрения.

Гомонимная гемианопсия характеризуется выпадением височной по­ловины поля зрения в одном глазу и носовой – в другом. Она обусловлена ретрохиазмальным поражением зрительного пути на стороне, противоположной выпадению поля зрения. Характер гемианопсии изменяется в зависимости от ло­кализации участка поражения зрительного пути. Гемианопсия может быть полной (рисунок 3.15, 4) при выпадении всей половины поля зрения или частичной, ква­дрантной (рисунок 3.15, 5, 6).

Рис. 3.15 – Изменения поля зрения в зависимости от уровня поражения зрительного пути

А – уровни поражения обозначегны цифрами; б – изменение поля зрения соответственно уровню поражения.

При этом граница дефекта проходит по средней линии, а при квадрантной гемианопсии начинается от точки фиксации. При кор­ковых гемианопсиях сохраняется функция желтого пятна (рисунок 3.15, 7). Мо­гут наблюдаться также гемианоптические скотомы в виде симметричных очаговых дефектов поля зрения (рисунок 3.15, 8).

Причины гомонимной гемианопсии различны: опухоли, кровоизлияния и вос­палительные заболевания головного мозга.

Гетеронимная гемианопсия характеризуется выпадением наружных или внутренних половин поля зрения и обусловлена поражением зрительного пути в области зрительного перекреста.

Битемпоральная гемианопсия (рисунок 3.15, 3) – выпадение наружных половин поля зрения. Она развивается при локализации патологического очага в области средней части зрительного перекреста и является частым симпто­мом опухоли гипофиза.

Биназальная гемианопсия (рисунок 3.16) – выпадение носовых половин поля зрения – развивается при поражении неперекрещенных волокон зрительного пути в области зрительного перекреста.

Рис.3.16 – Гетеронимная биназальная гемианопсия

Это возможно при двусто­роннем склерозе или аневризмах – внутренней сонной артерии и любом другом давлении на зрительный перекрест с обеих сторон.

Своеобразные изменения полей зрения обоих глаз при поражении различных участков зрительного пути настолько характерны, что являются важнейшим сим­птомом в топической диагностике заболеваний головного мозга.

Очаговый дефект поля зрения, не сливающийся с его периферическими границами, называется скотомой. Скотома может отмечаться непосред­ственно самим больным в виде тени или пятна. Такая скотома называется по­ложительной. Скотомы, не вызывающие у больного субъективных ощущений и обнаруживаемые только с помощью специальных методов исследования, носят название отрицательных.

При полном выпадении зрительной функции в области скотомы она обозна­чается как абсолютная в отличие от относительной скотомы, при которой восприятие объекта сохраняется, но он виден недостаточно отчетливо. Следует учесть, что относительная скотома на белый цвет может быть в то же вре­мя абсолютной на другие цвета.

Скотомы могут быть в виде круга, овала, дуги, сектора и иметь неправильную форму. В зависимости от локализации дефекта в поле зрения по отношению к точ­ке фиксации различают центральные, перицентральные, парацентральные, секто­ральные и различного вида периферические скотомы (рисунок 3.17).

Рис. 3.17 – Различные виды абсолютных скотом

Физиологические скотомы могут существенно увеличиваться. Увеличение раз­меров слепого пятна является ранним признаком некоторых заболеваний (глауко­мы, застойного диска зрительного нерва, гипертонической болезни и др.), поэто­му измерение его имеет большое диагностическое значение.

Светоощущение. Методы исследования

Способность глаза к восприятию света различной яркости называется светоощущением. Это наиболее древняя функция зрительного анализатора. Осуществляется она палочковым аппаратом сетчатки и обеспечивает сумеречное и ночное зрение. Световая чувствительность глаза проявляется в виде абсолютной световой чувствительности, характеризующейся порогом восприятия света, и различи­тельной световой чувствительности, которая позволяет отличать предметы окружающего фона на основе неодинаковой яркости.

Исследование светоощущения имеет большое значение в практической офталь­мологии. Светоощущение отражает функциональное состояние зрительного ана­лизатора, характеризует возможность ориентации в условиях пониженного осве­щения, нарушение его является одним из ранних симптомов многих заболеваний глаза.

Абсолютная световая чувствительность глаза – величина непостоянная, она зависит от степени освещенности. Изменение освещенности вызывает приспосо­бительное изменение порога светоощущения. Изменение световой чувствитель­ности глаза при изменении освещенности называется адаптацией. Способность к адаптации позволяет глазу защищать фоторецепторы от перенапряжения и вместе с тем сохранять высокую светочувствительность. По диапазону светоощущения глаз превосходит все известные в технике измерительные приборы; он может ви­деть при освещенности порогового уровня и в миллионы раз превышающей его.

Абсолютный порог световой энергии, способный вызвать зрительное ощуще­ние, ничтожно мал. Он равен 7-10 квантам света.

Различают два вида адаптации: адаптацию к свету при повышении уровня осве­щенности и адаптацию к темноте при понижении уровня освещенности.

Световая адаптация, особенно при резком увеличении уровня освещенности, может сопровождаться защитной реакцией зажмуривания глаз. Наиболее интен­сивно световая адаптация протекает в течение первых секунд, затем она замедля­ется и заканчивается к концу 1-й минуты, после чего светочувствительность глаза уже не увеличивается.

Изменение световой чувствительности в процессе темновой адаптации про­исходит медленнее. При этом световая чувствительность нарастает в течение 20-30 мин, затем этот процесс замедля­ется, и только к 50-60 мин достигается максимальная адаптация.

Кривая темновой адаптации глаза

Дальнейшее по­вышение светочувствительности наблю­дается не всегда и бывает незначитель­ным. Длительность процесса световой и темновой адаптации зависит от уровня предшествующей освещенности: чем бо­лее резок перепад уровней освещенности, тем длительнее происходит процесс адап­тации.

Исследование световой чувствитель­ности – сложный и трудоемкий процесс, поэтому в клинической практике часто применяют простые контрольные пробы, позволяющие получить ориен­тировочные данные. Самой простой пробой является наблюдение за действиями обследуемого в затемненном помещении, когда, не привлекая его внимания, ему предлагают выполнить простые задания: сесть на стул, подойти к аппарату, взять плохо видимый предмет.

Для точной количественной характеристики уровня световой чувствительно­сти существуют инструментальные способы исследования. С этой целью приме­няют адаптометры (рисунок 3.18).

Рис. 3.18 – Адаптометр

Расстройства сумеречного зрения называются гемералопией (от греч.:hemera – день,alaos – слепой иops – глаз), или ку­риной слепотой (так как действительно у всех дневных птиц отсутствует сумереч­ное зрение). Различают гемералопию симптоматическую и функциональную.

Симптоматическая гемералопия связана с поражением фоторецепторов сетчатки и является одним из симптомов органического заболевания сетчатки, со­судистой оболочки, зрительного нерва (пигментная дистрофия сетчатки, глауко­ма, невриты зрительного нерва и др.).

Функциональная гемералопия развивается в результате гиповитаминоза А и сочетается с образованием ксеротических бляшек на конъюнктиве вблизи лим­ба. Она хорошо поддается лечению витаминами А, В1. В2 .

Иногда наблюдается врожденная гемералопия без патологических изменений глазного дна. Причины ее возникновения неясны. Заболевание носит семейно-наследственный характер.